
Vertical asymmetry and the ripple-rotation transition in epitaxial growth
and erosion on (110) crystal surfaces

Artem Levandovsky* and Leonardo Golubović
Physics Department, West Virginia University, Morgantown, West Virginia 26506-6315, USA

�Received 8 May 2007; published 19 October 2007�

Vertical �up-down� asymmetry is ubiquitous feature of the nonequilibrium statistical mechanics of realistic
growing interfaces. Yet, the actual role of vertical asymmetry �VA� in epitaxial growth on crystal surfaces is
still elusive. Is vertical asymmetry a primary or secondary factor in epitaxial growth and erosion? Can vertical
asymmetry alone produce major qualitative effects on long length scale interface morphologies? To address
these questions in depth, we theoretically discuss the effects of vertical growth asymmetry on far-from-
equilibrium interfacial morphologies occurring in the epitaxial growth and erosion of �110� crystal surfaces. We
theoretically elucidate the so-called ripple rotation transition on the Ag�110� crystal surface �F. B. de Mongeot
et al.; Phys. Rev. Lett. 84, 2445 �2000�, G. Constantini et al., J. Phys.: Condens. Matter 13, 5875 �2001��, as
the transition between the rectangular rippled states �checker-board structures of alternating rectangular pyra-
mids and pits�. We show that the experimental surface diffraction data seen in this transition can be understood
only by invoking vertical growth asymmetry. In the proximity of the transition point, we find that vertical
asymmetry itself produces an interface morphology yielding a four-lobe near in-phase diffraction pattern
having four peaks along the principal axes of the �110� surface, in accord with the experiments on Ag�110�.
Moreover, on the two sides of the ripple rotation transition, we find two exotic interface states induced by
vertical asymmetry, which correspond well /to the interface morphologies seen on Ag�110�. We document our
results by numerical simulations and by analytic arguments. Our theoretical findings, in combination with
experiments, provide the first rigorous evidence that VA plays a significant role in epitaxial growth and erosion
on crystal surfaces.
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I. INTRODUCTION

Properties and dynamics of thin films surfaces are natu-
rally affected by the difference between the media and pro-
cesses going on above and below film interface. This up-
down vertical asymmetry �VA� has to be incorporated into
any realistic model of interface dynamics. Epitaxial growth
and erosion phenomena �1–10�, such as those studied in this
paper, are not exceptions to this. VA effects are clearly vis-
ible on the interfaces of homoepitaxially grown films, for
example, through the difference between the shapes of pyra-
mids and pits �upside-down pyramids� that develop during
the homoepitaxial growth on �100� and �111� crystal surfaces
�11�. The primary cause for the formation of these fascinat-
ing structures is the classical Ehrlich-Schwoebel-Villain
�ESV� instability �7�. To this date, however, the actual poten-
tial of VA to affect the interface morphology and dynamics
of epitaxial growth and erosion remains unexplored. Experi-
mentally, due to ubiquitous presence of VA, it is impossible
to “switch VA off” in order to see how much this effect really
matters. Interestingly, major effects here, such as the ESV
effect and slope stabilizing effects, themselves do not intro-
duce VA in a fundamental way �see Sec. II�. Moreover, under
some circumstances, continuum modeling of epitaxial
growth and erosion reproduces major features of the experi-
mentally observed interface dynamics �e.g., coarsening expo-
nents� even with VA effects ignored �6�. One is then naturally

lead to ask a basic question. Is VA primary or a secondary
factor in epitaxial growth and erosion? Notably, it is hard to
address this question by using microscopic �quasiatomistic�
modeling of the epitaxial growth phenomena, such as kinetic
Monte Carlo simulations or other similar approaches �10�.
Very similar to the experiments, realistic microscopic simu-
lations of epitaxial growth ubiquitously include VA and thus
can not be used to directly extract VA effects per se �sepa-
rately from other effects�. This is explicitly evidenced by the
step flow modeling of epitaxial growth recently discussed by
Li and Evans �5�. In addition to the ESV and slope selection
terms of the surface current, they obtain also VA current term
which is generally nonzero �5�. Thus, within microscopic
modeling, one cannot eliminate �switch off� VA effects while
still remaining within a physically acceptable model for ep-
itaxial growth.

In this study, we pursue a conceptually different approach
based on the phenomenological continuum modeling of in-
terface dynamics �4–6,8,9�. Within this approach, the inter-
face is described by its heights evolution equation, generally
of the form

�h�x�,t�
�t

= v�h� �1.1�

with v�h� being the local inteface height velocity �as in pre-
vous studies �4–9�, here we employ the frame comoving
with the interface�. v�h� is a functional of the interface
heights h�x� , t�. In the absence of VA, the interface velocity
v�h� is an odd functional of the interface heights v�−h�
=−v�h� and, therefore, vertical reflection h→−h becomes a
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dynamical symmetry of the interface evolution equation
�1.1�. With such a model, for example, there would be no
shape differences between pyramids and pyramdal pits
�upside-down pyramids�. However, in reality, VA is ubiqui-
tously present. Thus, for realistic interface dynamics models
v�−h��−v�h�, and the interface velocity can be generally
decomposed as

v�h� = vVS�h� + vVA�h� . �1.2�

Here, vVS�h�=−vVS�−h�= �v�h�−v�−h�� /2 and vVA�h�
=vVA�−h�= �v�h�+v�−h�� /2 are, respectively, odd and even
parts of v�h�. The even part, vVA�h� breaks the vertical re-
flection �h→−h� symmetry of the interface dynamics and
thus introduces the VA effects which are of primary interest
in the present study. The separation between different sym-
metry contributions in the continuum model Eq. �1.2� di-
rectly allows to extract generic VA effects simply by com-
paring the results obtained with nonzero VA to those
obtained with zero VA. Such a comparison is virtually im-
possible both in experiments and in microscopic kinetic
simulations.

Here, we will explore still largely elusive VA role in epi-
taxial growth by considering in depth VA effects on the
growth and erosion on �110� crystal surfaces. Recent experi-
mental studies have revealed a number of intriguing far-
from-equilibrium interfacial structures developing on these
surfaces, both in growth �1� and in ion beam erosion experi-
ments �2,3�. Understanding these structures is a challenging
yet experimentally very interesting problem of the nonequi-
librium statistical mechanics. It has been addressed theoreti-
cally within a continuum phenomenological theory, however,
with no VA effects incorporated �4�. Even so, this theory has
provided new and interesting insights such as the prediction
of the so-called rhomboidal pyramid interface state which
has been indeed seen in the subsequent experiments on �110�
surfaces of copper and rhodium �3�. Unlike the epitaxial
growth phenomena on high symmetry �100� and �111� sur-
faces on which growing pyramidal structures form �5,6,8,9�,
on low symmetry rectangular �110� surfaces, the dominant
interfacial structures formed due to the ESV instability are
the rippled states �1–3�. They are wavelike, seemingly one-
dimensional periodic structures, seen in the experiments of
de Mongeot and co-workers, on �110� crystal surfaces of
silver, copper, and rhodium �1–3�. Rippled state wave-vector
points along one of the two principal �high symmetry� direc-
tions of the �110� surface. Experimentally, rippled state inter-
face Fourier transform �FT� magnitude �obtained from near
in-phase surface diffraction patterns� has a single pair of
peaks which are at two opposite q vectors along the principal
directions of �110� �1�. In addition, the interface slope distri-
bution �SD� �obtained from out-of-phase diffraction pat-
terns�, for a rippled state also exhibits a pair of peaks �dou-
blet� that are along one of the two high symmetry surface
directions. This suggests that rippled state interface has a
zig-zag profile comprised of facets with alternating �in sign�
slopes. The slope vectors of these facets are along one of the
two principal directions of the �110� crystal surface. Thus,
depending on the choice of the preferred facet direction,
there are two major kinds of the rippled states R1 and R2 �4�.

In contrast to the high symmetry �100� surfaces, the two
principal directions of �110� surfaces are not equivalent
�symmetry related�. Due to this, most commonly, only one of
the two rippled states, R1 or R2 occurs under given experi-
mental conditions. By changing these conditions, such as
substrate temperature, deposition �or erosion� flux intensity
and molecular beam energy, de Mongeot and co-workers
were able to drive far-from-equilibrium transitions between
the two kinds of rippled states �1–3�. Both the experiments
�1–3� and the theory �4� have evidenced a complex character
of this so-called ripple rotation �by 90°� transition. In gen-
eral, the transition goes through the formation of intermedi-
ary states, such as the aforementioned rhomboidal pyramid
�RhP� state.

The present study is devoted to the statistical mechanics
of an alternative scenario of the ripple rotation transition
which is realized in the experiments on the Ag�110� surface,
both in the epitaxial growth �1� and in the erosion studies �2�.
In these systems, the ripple rotation transition occurs in a
multistable system parameter range, in which both types of
the rippled state facets, R1 and R2 are locally stable. Due to
this multistability, the simple rippled states R1 and R2 are
replaced by more complex structures, the so-called rectangu-
lar rippled states R1

�rec� and R2
�rec� �4�. These interface states

are checker-board structures of alternating rectangular pyra-
mids and pits, see Fig. 1. Unlike, for example, the simple R1

rippled state, a rectangular pyramid of the R1
�rec� state incor-

porates not only the long R1 facets but also significantly
smaller metastable R2 facets �4�. Our rippled rectangular
pyramid structures in the Fig. 1 can indeed be seen in the
STM images obtained in the erosion experiments on Ag�110�
�see Fig. 4�d� of Ref. �2��.

We will show here that the experimental surface diffrac-
tion patterns and underlying surface morphologies seen in
this far-from-equilibrium transition on Ag�100�, are qualita-
tively strongly affected by vertical growth asymmetry; see
Secs. II and III. Theoretical findings of the present paper, in
combination with the experimental data in Refs. �1,2�, pro-
vide the first clear cut evidence that VA plays a significant
role in epitaxial growth and erosion on crystal surfaces.
While it has been long known that, for example, on the �100�
surfaces, VA produces experimentally seen differences be-
tween the shapes of four sided pyramids and pits �inverted
pyramids� �11�, actual VA effects on interface structure and
dynamics are still inconclusively debated and remain elusive.
In fact, some real �and likely still incomplete� understanding
of VA structural and dynamical effects has begun to emerge
only recently, for the case of high symmetry �100� surfaces
�6�. Here, we discuss, in depth, VA effects on low symmetry
�110� crystal surfaces. We find that VA plays an essential role
in the multistable range in which the rippled rectangular
states form. Interestingly, we find that, due to VA, the ripple
rotation transition is smeared and occurs over an extended
parameter range: The transition point at which the qualitative
change of near in-phase diffraction patterns occurs turns out
to be different from the transition point at which the qualita-
tive change of out-of phase diffraction patterns occurs. At the
former transition point, we find the four-lobe near in-phase
diffraction pattern with the four peaks along the principal
axes of the �110� surface, in accord with the experiments on
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Ag�110� �1�, see Sec. III. Such a pattern and the underlying
surface morphology are different from those occurring with
zero VA �seen in Fig. 1�b��. This theoretical finding, and its
consistency with the experiments, show that VA itself can
induce formation of unique surfaces morphologies that
would be absent with zero VA. Moreover, on the two sides of
the extended ripple rotation transition, we find two interest-
ing interface states which are qualitatively altered forms of
the rectangular rippled states �see Secs. II and III�. These two
interface states are both induced by the VA presence, and
correspond well to the interface morphologies seen in the
STM images of Ref. �2�. One of them exhibits an enhanced
roughening which was indeed seen in the experiments on
Ag�110� surface �2�. This intensely rough interface state is an
exotic alteration of the rectangular rippled R1

�rec� state, with
rectangular pyramids replaced by arrays of small �nearly�
square shaped pyramids packed between long rectangular

pits. The other interface state revealed here is an altered form
of the rectangular rippled R2

�rec� state. It has depressed pit
sizes, whereas the rooftop edges of elongated wormlike
mounds are decorated by fascinating arrays of small rounded
mounds. Unlike the former, this latter state does not exhibit
enhanced roughening. Due to this difference between the
roughening characters of the two exotic states, the interface
data are highly asymmetric across the ripple rotation transi-
tion, as was indeed seen in the experiments on Ag�110� �1,2�.
We document our results by numerical simulations and by
analytic arguments applied to a general continuum model for
the growth and erosion of �110� crystal surfaces.

The layout of this paper is as follows. In Sec. II, we
conceptually and analytically discuss the effects of VA on the
interface dynamics in epitaxial growth. At the end of Sec. II
and in Sec. III, we corroborate our analytic discussions by
numerical simulations. In Sec. IV we summarize our theoret-
ical results and compare them with the growth and erosion
experiments on the Ag�110�.

II. INTERFACE DYNAMICS AND VERTICAL
ASYMMETRY

Under conditions typical for epitaxial growth, the inter-
face heights h�x� , t�, above the film base �with x� = �x1 ,x2�, the
film base vector�, obey a conservation law. In the absence of
desorbtion, vacancies, or overhangs, all relaxation processes
on the surface conserve the deposited volume of the growing
film. Thus, in the frame comoving with the interface, the
height evolution equation �1.1� is of the form

�h�x�,t�
�t

= v�h� = − �� · J� = −
�J1

�x1
−

�J2

�x2
, �2.1�

where J� is the surface current �5–9�. It can be written as

J� = J�NE��� h� + J��curv�. �2.2�

Here, J�NE��� h� is the nonequilibrium surface current

which is a function of the local interface slope vector M�

=�� h= �M1 ,M2�, with M1=�h /�x1 and M2=�h /�x2

�4–6,8,9�. In contrast to J�NE current, J��curv� in Eq. �2.2� is a
“curvature current” which vanishes on flat interfaces �“fac-

ets”� for whatever slope M� =�� h they have. It has the form

J��curv� = J�SD + J�VA. �2.3�

Here, J�SD��� ��2h� is a contribution isomorphic to the Mul-
lins’ surface diffusion current, whereas the second term in
Eq. �2.3� is the vertical asymmetry current. It has been sug-
gested originally by Villain �7�, in the form

J�VA � �� ��� h�2,

which is even under h→−h and thus produces an even con-
tribution to the interface velocity introducing VA into inter-

face dynamics; see Eq. �1.2�. In contrast to J�VA, both the
nonequilibrium and Mullins’ surface diffusion currents are

SD

SD

SD

FT

FT

FT

a > a
cr

a = a
cr

a < a
crc)

b)

a)

FIG. 1. Ripple rotation transition between the rectangular
rippled states R1

�rec� and R2
�rec�, for zero VA. The figure gives inter-

face morphologies �through surface contour plots� and the standard
surface diffraction data: interface slope distributions �SD� and Fou-
rier transform �FT� magnitudes. The two R�rec� states are checker-
board structures of alternating rectangular rooftoplike pyramids and
pits �inverted rooftops�. For a�acr, the R2

�rec� state develops, in a�,
whereas for a�acr the R1

�rec� state develops, in c�. Here, a is a
temperaturelike control parameter, see the text. At the very transi-
tion point �a=acr�, for zero VA, the interface is a checkerboard
structure of alternating four-sided pyramids and pyramidal pits,
yielding the FT with four peaks at �±q1 , ±q2�, see b�.

VERTICAL ASYMMETRY AND THE RIPPLE-ROTATION … PHYSICAL REVIEW E 76, 041605 �2007�

041605-3



both odd under the vertical reflection h→−h and thus do not
contribute any VA. In particular, the nonequilibrium current

J�NE��� h� �which encodes the significant ESV instability and
other effects stabilizing the preferred slopes �4–6,8,9�� does
not break the vertical symmetry for the following fundamen-
tal reason: By assuming normal flux incidence, one must

have J�NE�−M� �=−J�NE�M� � due to the symmetry of major crys-
tal surfaces �such as �100�, �111�, and �110�� under the “hori-
zontal”�base plane� inversion x�→−x�. It is then not hard to

see that, as M� =�� h=�h /�x�, the horizontal inversion symme-

try incidentally implies that J�NE must change sign also under
the “vertical” reflection h→−h �with x� unchanged�. Thus,

incidentally, the nonequilibrium current J�NE��� h� does not in-
troduce any VA. In view of this, the fundamental growth
features, such as the allowed values of preferred facet slopes

vectors �encoded in the form of J�NE��� h� through its stable
zeros �4–9�� are insensitive to VA. One thus arrives at a
striking conclusion that the major growth factors, such as the
Ehrlich-Schwoebel-Villain instability and slope stabilizing

effects modeled by J�NE��� h�, themselves do not introduce VA
in a fundamental way. Nonetheless, the VA is ubiquitously
present in realistic systems: the putative up-down reflection
h→−h is not a symmetry of any realistic interface dynamics.
Due to VA, the shapes of pyramids and pits are not simply
related to each other by the upside-down reflection. Yet, po-
tential effects of VA are still uncertain and poorly under-
stood. Can VA alone produce major qualitative effects on
long length scale interface morphologies? As noted above,
the possible values of preferred facet slopes vectors �corre-

sponding to the set of stable zeros of J�NE��� h� �4–9�� are
insensitive to VA. However, which ones of these many zeros
are going to be selected during interface growth is generally

not encoded in the form of J�NE��� h� �such as the one in Eq.
�2.6� in the following�. Unless some special restrictions, not
generic to epitaxial growth process, are arbitrarily imposed
on the form of the surface current �e.g., the existence of an
effective free energy generating the model dynamics�, the
very selection of preferred facets out of the set of all allowed

facets �corresponding to all stable zeros of J�NE��� h�� will be
kinetically decided during the surface evolution. Due to this
feature, the kinetic VA effects may potentially play qualita-
tively important role in determining the form of large scale
structures of the growing interfaces in epitaxial growth and
erosion.

To proceed, we note that above-mentioned Villains’s VA
current contributes the so-called conservative Kardar-Parisi-

Zhang �CKPZ� term −�� ·J�VA�−�2��� h�2 to the interface ve-
locity in Eq. �2.1�. Here, this term is exhibited in the form
applicable to isotropic surfaces. For the rectangular symme-

try �110� surfaces, the forms of J�VA and of the corresponding
conservative CKPZ term are more complex. By respecting
the symmetries of �110� surfaces, we find that VA contributes
to the interface velocity Eq. �2.1� the CKPZ term of the
general form

− �� · J�VA = −
�11

2
� �

�x1
�2� �h

�x1
�2

−
�12

2
� �

�x1
�2� �h

�x2
�2

−
�21

2
� �

�x2
�2� �h

�x1
�2

−
�22

2
� �

�x2
�2� �h

�x2
�2

−
�3

2

�

�x1

�

�x2
� �h

�x1

�h

�x2
	 , �2.4�

which is, again, even in h, in contrast to the surface diffu-

sionlike �Mullins� current J�SD, which on �110� surfaces con-
tributes to the interface velocity �2.1� the term of the general
form

− �� · J�SD = − �11� �

�x1
�4

h − 2�12� �

�x1
�2� �

�x2
�2

h

− �22� �

�x2
�4

h , �2.5�

which is odd in h. In Eq. �2.5�, for the �110� crystal surface,
the constants ��� are generally unequal to each other �4�.
The VA contribution to the interface velocity exhibited in Eq.
�2.4� is consistent with the symmetries of the �110� surface.
They require Eq. �2.4� to be invariant under the two reflec-
tions: �i� �x1 ,x2�→ �−x1 ,x2� and �ii� �x1 ,x2�→ �x1 ,−x2�. Here,
and in the following, the coordinate axes are along the two
principal crystallographic directions of �110�. For the �110�
surfaces, the two principal directions are not equivalent to
each other, and due to this, the constants ��� in Eq. �2.4� are
generally unequal to each other. Thus, for �110� surfaces,
there are five independent � constants in Eq. �2.4�. It is illu-
minating to note that for the higher symmetry �100� surfaces
one has also the diagonal reflection symmetry �6� �x1 ,x2�
→ �x2 ,x1�, implying �11=�22 and �12=�21 in Eq. �2.4�. So,
for the �100� surfaces, there are three independent � con-
stants in Eq. �2.4�. Finally, for isotropic surfaces, Eq. �2.4�
must be invariant under all 2D rotations, implying �11=�12
=�21=�22=�VA and �3=0. In this case, Eq. �2.4� reduces to
the conservative KPZ term of the simple �single constant�
form

− �� · J�VA = −
�VA

2
�2��� h�2, �2.4��

which is strictly applicable only to the idealized isotropic

surfaces. The form of the nonequilibrium current J�NE in Eq.
�2.2� is also restricted by the reflection symmetries of the
�110� surface, which imply the expansion of the form �4�

J1
NE�M1,M2� = M1�r1 − u11M1

2 − u12M2
2 + ¯ � ,

J2
NE�M1,M2� = M2�r2 − u22M2

2 − u21M1
2 + ¯ � . �2.6�

The ellipses in Eq. �2.6� indicate higher order terms which
will be truncated out in the following. This yields the sim-
plest possible yet comprehensive model consistent with the
symmetries of �110� surface which are respected by the terms
exhibited explicitely in Eq. �2.6�. By an anisotropic rescaling
of the coordinates �x1 ,x2� discussed in Ref. �4� �see Eqs.

�2.15� and �2.16� therein�, the above continuum form of J�NE
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can be made to depend only on three dimensionless param-

eters �a ,b ,c�. In the rescaled model, J�NE is as in Eq. �2.6�
with r1=1+a, r2=1−a, u11=u22=1, u12=b+c, u21=b−c, as
employed hereafter. Preferred interface slopes correspond to

zeros of J�NE�M� �. Thus, in the rescaled model, the R1 doublet
of facets �giving rise to the R1 rippled state� occurs at the
slopes

M1 = ± 
1 + a, M2 = 0. �2.7�

Likewise, the R2 doublet of facets �giving rise to the R2
rippled state� occurs at the slopes

M1 = 0, M2 = ± 
1 − a . �2.8�

Slopes in Eqs. �2.7� and �2.8� are shown in our Fig. 2�a�.
Importantly for our discussions, the R1 and R2 facets in Eqs.
�2.7� and �2.8� are both stable for the parameter a in the
range

a+�b,c� � a � a−�b,c� �2.9�

with a+= �1−b+c� / �1+b−c� and a−= �1−b−c� / �1+b+c�.
For a+�a−, i.e., for b�
1+c2, one has a multistable range
Eq. �2.9� in which the rectangular rippled states R1

�rec� and
R2

�rec� develop �see Ref. �4� and the discussions at beginning
of Sec. III here�. In this study, our primary interest is in the
VA effects on the interface morphologies occurring in this
multistable range. Unlike the simple rippled states, each of
the two R�rec� states involves both R1 and R2 facets; see Fig.
1. These two types of facets are not equivalent �symmetry
related� to each other. Thus, in general, they can coexist only
across moving edges between them �4�. Due to the edges
motion, in the R1

�rec� state, the R1 facets grow faster than the
R2 facets, whereas in the R2

�rec� state the R2 facets grow faster
than the R1 facets. This edges motion produces the surface
morphologies seen in rectangular rippled states; see Figs.
1�a� and 1�c�. Only at a special �critical� point can one have
a static edge between the R1 and R2 facets. For zero VA, this
point occurs at a=acr, with

acr =

1 + �c/3�2 − 1

c/3
, �2.10�

see Ref. �4� and the discussion below Eq. �2.28� in the fol-
lowing. For a=acr, the interface dynamics equation �2.1� has
a steady solution

�h

�t
= − �� · J�NE − �� · J�curv = 0, �2.11�

corresponding to the static edge between semi-infinite R1 and
R2 facets. For zero VA, the critical value of the control pa-
rameter a in Eq. �2.10� corresponds to the transition point
between the R1

�rec� and R2
�rec� states �4�. At this critical point,

R1 and R2 facets can coexist across the static edges. This
feature allows for the nonequivalent R1 and R2 facets to grow
at the same rate at the critical point. Thus, instead of rectan-
gular rippled structures, one finds the checker-board structure
of four sided pyramids; see Fig. 1�b� from our zero VA simu-
lations at a=acr. Thus, by this Gibbs’ style argument �with
the equilibrium Gibbs’ interfaces between different phases

corresponding to the static edges between nonequivalent fac-
ets�, one can elucidate the kinetic phase transitions in epitax-
ial growth and erosion.

For nonzero VA, these far-from-equilibrium transitions
can also be discussed by searching for the static edge solu-
tions of the Eq. �2.11�. However, with nonzero VA, an addi-

FIG. 2. Multistable range involved in the transition from the
R2

�rec� to R1
�rec� state. a� Variations of the slopes of the R1 and R2

facets, respectively, M1=
1+a and M2=
1−a, versus the tempera-
turelike dimensionless parameter a. Facet slopes are given by thick
�thin� lines for stable �unstable� facets. Both R1 and R2 facets are
stable for a in the range a+�a�a−. b� Variation of the square of
the interface width �h2�, given �for nonzero VA� by solid lines for
several different deposition times, versus the parameter a, as ob-
tained from our simulations. Labeled are the four characteristic val-
ues of a, namely, a3�a2�a1�a0, discussed in the text. In these
simulations, in Eq. �2.4� �so, in Eq. �3.1� as well� we set �11=�12

=�21=�22=�, and �3=0, as in the isotropic VA model, Eq. �2.4��,
characterized by ��=0,�=�� �see the text after Eqs. �2.15� and
�2.13��. In Eq. �2.5� �so, in Eq. �3.1� as well�, we set �11=�12

=�22=�, with � /
�=3 �see, also, Fig. 4 caption�. Also, in Eq. �2.6�,
we set c=3/4 and b=2, yielding a+=−0.11 and a−=0.47 �see the
text below Eq. �2.9��. With these values, from our simulations we
find the presence of four characteristic a parameter values a3


0.05, a2
0.20, a1
0.225, a0
0.35, discussed in Secs. II and III
�see also Figs. 4–7�. For comparison, in b� we include also the
simulations results obtained with zero VA, i.e., �=0 �dashed lines�.
The ripple rotation transition region occurs over a narrow range
between a2
0.2 and a1
0.225; see also Fig. 5. Note that the VA
significantly enhances interface roughness to the right of the ripple
rotation transition region.
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tional complexity emerges, because there are two distinct
types of the edges between R1 and R2 facets, see Fig. 3: �i�
the convex edges, such as the uphill edges emerging from the
pit-bottom edges of the rectangular shaped pits of the R�rec�

state, see Fig. 3�a�; �ii� the concave edges, such as the down-
hill edges emerging from the rooftop edges of the rectangular
shaped pyramids of the R�rec� state, see Fig. 3�b�. For zero
VA, these two types of static R1-R2 edges are simply related
to each other, because if +h�x�� solves Eq. �2.11�, then −h�x��
also solves the same equation. So, the static concave down-
hill edge is directly obtained from the static convex uphill
edge, simply by the vertical reflection of the interface profile
h�x��. Due to this, for zero VA, both types of static edges exist
for the same critical value of the parameter a, given in Eq.
�2.10�. However, with ubiquitously present nonzero VA, the
vertical reflection h→−h ceases to be a symmetry of the
interface dynamics, i.e., if +h�x�� solves Eq. �2.11�, then
−h�x�� does not solve the same equation �for the same value
of a�. In view of this, for nonzero VA, the value of a needed
for the existence of the static convex uphill edge �Fig. 3�a��
is generally different from the value of a needed for the
existence of the static concave downhill edge �Fig. 3�b��. Let
us call these two special �critical� values of the control pa-
rameters as aconvex and aconcave. By the above discussions, in
general,

aconvex � aconcave

unless VA is zero, hence aconvex and aconcave both become
equal to the critical value given by Eq. �2.10�. The existence
of two distinct critical points will be shown in the following
to be the major factor responsible for the complex VA in-

duced interfacial morphologies revealed at the end of this
section and in Sec. III.

We now proceed to discuss and extract aconvex and aconcave
quantitatively, by solving Eq. �2.11� with nonzero VA. For
this purpose, it is convenient to proceed by using a rotated
coordinate system �xT ,xL�, with the xT and xL, respectively,
perpendicular and along the edge. In this coordinate system,
the interface profile for a very long static edge has the form

h�xT,xL� = MLxL + �h�xT� , �2.12�

where ML=const is the longitudinal �L� slope component
along the edge, whereas the function �h�xT� can be found by
solving Eq. �2.11�. Note that

MT�xT� =
�h

�xT
=

d�h�xT�
dxT

�2.13�

is simply the transversal �T� interface slope component �per-
pendicular to the edge�. Unlike the constant ML, the slope
component MT�xT� changes as one passes, for example, from
the R1 facet to the R2 facet by going across the R1-R2 edge;
see Fig. 4�a�. For the static edge solution in Eq. �2.12�, Eq.
�2.11� �with entries given by Eqs. �2.4�–�2.6�� reduces to

0 =
d

dxT
JT�xT� �2.14�

with

JT�xT� = JT
NE�MT� + �

d2MT

dxT
2 +

1

2
��

d

dxT
�MT�2 − ��ML

d

dxT
MT.

�2.15�

Here, JT
NE is the J�NE component perpendicular to the edge,

whereas ��� ,��� and � are, respectively, certain linear com-
binations of the � and � constants in Eqs. �2.4� and �2.5�. For
example, for the isotropic VA case, Eq. �2.4��, we find that
��=�VA, ��=0.

For xT→±	, the slope vector M� approaches the R1 and R2

slope vectors at which J�NE�M� � vanishes. Due to this, by in-
voking Eq. �2.14�, JT�xT� must be zero

JT�xT� = 0, �2.16�

for a static edge interface profile. Finding it reduces to solv-
ing for MT�xT� the nonlinear second order differential equa-
tion defined by Eqs. �2.16� and �2.15�.

In the following, we discuss aconvex and aconcave for the
R1-R2 edges between the R1 and R2 facets with the slope
vectors given by Eqs. �2.7� and �2.8�. Let us consider the R1

facet with the slope vector M� �R1�= �M1=
1+a ,M2=0�, and

the R2 facet with the slope vector M� �R2�= �M1=0 ,M2

=
1−a�, see Fig. 4�a�. The above employed slope compo-
nents �ML ,MT� are related to the original slope vector
�M1 ,M2� by the rotation

M1 = ML cos�
� − MT sin�
� ,

x
2

x
1

rooftop edges

concave
downhill
edges

b)

a) convex
uphill
edges

pit-bottom edges

x
2

x
1

FIG. 3. a� Convex uphill edges between R1 and R2 facets. They
emerge from the long edges along bottoms of rectangular shaped
pits. For a�aconvex the uphill edges move, so pits grow in length
either along the x1 direction �as in the R1

�rec� state� or along x2

direction �as in the R2
�rec� state�. b� Concave downhill edges between

R1 and R2 facets. They emerge from the long edges along the roof-
tops of rectangular shaped pyramids. For a�aconcave, the downhill
edges move, so rooftops grow in length either along the x1 direction
�as in the R1

�rec� state� or along the x2 direction �as in the R2
�rec� state�.
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M2 = ML sin�
� + MT cos�
� , �2.17�

where 
 is the rotation angle; sin�
�=
�1+a� /2, ML

=
�1−a2� /2, as easily deduced from Fig. 4�a�. The transver-

sal component of the current J�NE �along MT� is

JT
NE = J2

NE cos�
� − J1
NE sin�
� . �2.18�

Using Eqs. �2.18� and �2.17�, in combination with Eq. �2.6�,
yields

JT
NE�MT� = − ��MT − MT

�R1���MT − MT
�R2��

��MT −
MT

�R1� + MT
�R2�

2
− �MT� . �2.19�

In Eq. �2.19�,

MT
�R1� = −

1 + a

2

, MT
�R2� =

1 − a

2

, �2.20�

are the transversal components of the slope vectors of the R1
and R2 facets, whereas

� = 1 + 1
2 �1 − a2��b − 1� �2.21�

and

�MT =
6a − �1 − a2�c

2
2�
. �2.22�

To proceed, we change the variable MT�xT� into

m�xT� = MT�xT� −
MT

�R1� + MT
�R2�

2
. �2.23�

With this change and by Eq. �2.19�, our Eq. �2.16� assumes
the form

0 = JT�xT� = j1 + j2 �2.24�

with

j1 = �m��MT
�R2� − MT

�R1�

2
�2

− m2	 + �
d2m

dxT
2 +

��

2

d

dxT
m2

�2.25�

and

j2 = ��MT��MT
�R2� − MT

�R1�

2
�2

− m2	
+ ���

MT
�R1� + MT

�R2�

2
− ��ML� d

dxT
m . �2.26�

By Eq. �2.23�,

MT�xT� − MT
�R1� = mT�xT� +

MT
�R2� − MT

�R1�

2
,

MT�xT� − MT
�R2� = mT�xT� −

MT
�R2� − MT

�R1�

2
. �2.27�

Note that, by Eq. �2.20�, �MT
�R2�−MT

�R1�� /2=1/
2 is a positive
quantity here. By Eq. �2.27�, there are two geometrically
distinct edge solutions to Eq. �2.24�: �i� Convex static edges.
For them, MT�xT�→MT

�R1�, i.e., m�xT�→−�MT
�R2�−MT

�R1�� /2
for xT→−	, and MT�xT�→MT

�R2�, i.e., m�xT�→ + �MT
�R2�

−MT
�R1�� /2 for xT→ +	. For convex edges, MT�xT� is an in-

creasing function of xT, dMT /dxT=�2h /�x�
2 �0, justifying

their name. �ii� Concave static edges. For them, MT�xT�
→MT

�R1�, i.e., m�xT�→−�MT
�R2�−MT

�R1�� /2 for xT→ +	, and
MT�xT�→MT

�R2�, i.e., m�xT�→ + �MT
�R2�−MT

�R1�� /2 for xT

→−	. For concave edges, MT�xT� is a decreasing function of
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FIG. 4. a� aids the analytic discussions of Sec. II yielding the
seminal condition Eq. �2.37� for the coexistence of the nonequiva-
lent R1 and R2 facets across a static edge. b� plots Eq. �2.37� with
both signatures. Here, as in our simulations, the graph is given for
c=3/4, b=2, ��=� as in the isotropic VA model Eq. �2.4�� hence
Eq. �2.37� reduces to Eq. �2.37��; see Fig. 2 caption, and the text
after Eqs. �2.15� and �2.31�. For these values, acr�0.123 by Eq.
�2.10�, whereas Eq. �2.37�� has a vertical asymptote seen at a*
�0.232. For � /
�=3, as in the simulations, we find, by solving Eq.
�2.37��, that aconvex�0.0431 and aconcave�0.197. These analytic re-
sults correspond accurately to the characteristic a parameter values
a3
0.05 and a2
0.20 obtained from our simulations. Thus, the
altered R2

�rec� state �with depressed pits� seen in the simulation in
Fig. 5�b� actually occurs for the parameter a in the range a3

=aconvex�a�a2=aconcave.
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xT,dMT /dxT=�2h /�x�
2 �0, justifying their name.

In terms of the order parameter m�xT�, the static edges are
thus expected to appear as topologically stable soliton type
solutions to Eq. �2.24� similar to domain walls in magnetic
systems �12�. However, by inspecting in detail the form of
our Eqs. �2.24�–�2.26�, the similarity to the familiar magnetic
domain walls is manifest only for zero VA ���=��=0�. In
this limit, Eq. �2.24� can be shown to have domain-wall so-
lutions that vanish both j1 and j2 separately. Indeed, the j1 in
Eq. �2.25� is easily shown to vanish for the domain wall
solution of the form

m�xT� = ±
MT

�R2� − MT
�R1�

2
tanh� xT

w±
� , �2.28�

with �for zero VA� w+=w−=2��T /��1/2, whereas, by Eq.
�2.26� with zero VA, the condition j2=0 then implies that
�MT=0. Using this and Eq. �2.22�, we recover the zero VA
critical value of the parameter acr stated in Eq. �2.10�. In Eq.
�2.28�, the � ��� signature corresponds to convex �concave�
edges. For zero VA, both convex and concave edges are re-
alized at the same critical value of a, Eq. �2.10�. This feature,
as well as the equality of the convex and concave edges
widths w+=w− is simply a consequence the “vertical symme-
try” �h→−h, i.e., m→−m� acquired by the model and thus
by Eq. �2.24� in the zero VA limit. However, the situation
changes qualitatively for whatever nonzero VA. Convex and
concave static edge solutions are then not related to each
other by the vertical flip m→−m. They are thus expected to
have different profiles �w+�w−�. Even more interestingly,
with a nonzero VA present, there is no any reason for convex
and concave static edges to be realized at the same value of
the system parameter a. Indeed, as discussed quantitatively
hereafter, convex and concave static edges are realized at
two different values of the system control parameter a, la-
beled as aconvex and aconcave. A remarkable feature of our
model, and of Eq. �2.24� with a nonzero VA, is that the static
edges solutions can be �again� obtained in terms of exact
analytic forms which vanish both j1 and j2 separately. Be-
yond this special and nontrivial feature is the following iden-
tity �a differential equation� satisfied by the standard tangent-
hyperbolic function y�z�=tanh�z�

dy

dz
= 1 − y2. �2.29�

Applying this identity �and its consequence, d�y2 /2� /dz
=y�1−y2�� to the static edge profile of the form as in Eq.
�2.28�, one finds that j1 in Eq. �2.25� assumes the form

j1 =
d

dxT
�m0 tanh2�xT/w�

2w
���m0w�2 + ��m0w − 2��	 ,

which implies that j1 vanishes if the domain wall width w
satisfies the equation

��m0w�2 + ��m0w − 2� = 0. �2.30�

Above, m0= ± �MT
�R2�−MT

�R1�� /2, i.e., by Eq. �2.20�, m0

= ±1/
2, with � ��� signature corresponding to convex
�concave� edges. Moreover, strikingly, by again using the

identity Eq. �2.29�, we find that j2 in Eq. �2.26� also vanishes
provided

�MT =
���MT

�R1� + MT
�R2�� − 2��ML

2�m0w
= −

�a

21/2�m0w
.

�2.31�

Here, �=��+���1−a2�1/2 /a. In particular, for isotropic VA in
Eq. �2.4��, �=�� as ��=0; see the text after Eq. �2.15�.

Solving the quadratic Eq. �2.30� for m0w yields

m0w = −
��

2�
±
� ��

2�
�2

+
2�

�
. �2.32�

Here, the signature ± is to be chosen such that edge width
w�0 �we choose to regulate the overall sign of the solution
Eq. �2.28� by the sign of the prefactor m0 of the tanh function
therein�. In view of this, the width of convex edges �m0

= +1/
2�0� is, by Eq. �2.32�,

w+ = 
2�−
��

2�
+
� ��

2�
�2

+
2�

�
� � 0, �2.33�

whereas the width of concave edges �m0=−1/
2�0� is
found as

w− = 
2�+
��

2�
+
� ��

2�
�2

+
2�

�
� � 0. �2.34�

As anticipated before, these two distinct types of static edges
are expected to be realized at two different critical values of
the system parameter a, labeled as aconvex and aconcave. To
extract these values, we first solve Eq. �2.31� for m0w and
insert it into Eq. �2.30�. This yields the equation

���2

��
=

�2�MT

a
�2

1 − 
2
��

�

�MT

a

. �2.35�

Next, note that by Eq. �2.31�, the signs of the quantities
entering Eq. �2.35� are related by sgn��MT /a� sgn���
=−sgn�m0�. Using this, Eq. �2.35� is easily seen to be equiva-
lent to

−
�


��
= sgn�m0�

2
�MT

a


1 − 
2
��

�

�MT

a

. �2.36�

Using here Eqs. �2.21� and �2.22�, we arrive at the equation

+
�


�
= ±

− 6 + �1 − a2�
c

a

�2 + �1 − a2��b − 1� +
��

�
�− 6 + �1 − a2�

c

a
�	1/2 .

�2.37�

For example, for isotropic VA model in Eq. �2.4��, with �
=�� �as noted after Eq. �2.31��, Eq. �2.37� reduces to
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+
�


�
= ±

− 6 + �1 − a2�
c

a

�− 4 + �1 − a2��b − 1 +
c

a
�	1/2 . �2.37��

In Eqs. �2.37� and �2.37��, the � signature corresponds to
convex edges �with m0= +1/
2�0� whereas the � signa-
ture corresponds to the concave edges �with m0=−1/
2�0�.
Equation �2.37� is our central analytic result and the key for
understanding phenomena revealed by numerical simulation
discussed in the following. For given �, i.e., for a given
strength of the VA, Eq. �2.37� can be applied with the �
signature to find aconvex, and with the � signature to find
aconcave, as illustrated in Fig. 4�b�. For zero VA ��=0�, Eq.
�2.37� yields the single critical value acr in Eq. �2.10�, which
vanishes the numerator on the right-hand side of Eq. �2.37�.
For this case only, obviously by the form of Eq. �2.37�, the
signature does not matter, so aconvex=aconcave=acr. However,
for any ��0, solving Eq. �2.37� for a gives a distinct a value
for each signature, aconvex with � signature, and aconcave with
� signature, as evident from Fig. 4�b�. It plots the Eq. �2.37�,
with both signatures. From Fig. 4�b�, we see that, for a posi-
tive VA, i.e., ��0 �what is likely typical situation in epitax-
ial growth and erosion �11�� one has

aconvex � aconcave. �2.38�

To elucidate full meaning and implications of aconvex and
aconcave on interface morphology, we carried out extensive
numerical simulations of our model in Eqs. �2.1� through
�2.6�. These simulations reveal the existence of four charac-
teristic a parameter values a3�a2�a1�a0 related to VA;
see Figs. 2, 5, and 6. The very ripple rotation transition oc-
curs in a narrow range between a2 and a1; see Sec. III. Quan-
titative comparisons between the solutions to Eq. �2.37� and
our simulations, reveal that aconvex
a3 and aconcave
a2

a1; see Fig. 4 caption. By Eq. �2.38�, by decreasing the
control parameter a, the system first encounters aconcave, at
which the concave downhill edges �emerging from the roof-
tops of the R1

�rec� state rectangular pyramids, see Fig. 3�b��
become static. By a further decrease of a, the system encoun-
ters aconvex, at which the convex uphill edges �emerging from
the bottoms of the R2

�rec� rectangular pits, see Fig. 3�a�� be-
come static. Because of these features, several qualitatively
different interface morphologies are encountered with de-
creasing the control parameter a.

�i� For a sufficiently above aconcave��aconvex�, both the
rooftops and pit bottoms grow along the x2 direction �much
as for zero VA in Fig. 1�c��. Thus, the interface is in the R1

�rec�

state, if a is sufficiently above aconcave, as seen in our simu-
lations for a�a0��aconcave� in Fig. 5�f�.

S DS DS D

S DS DS D

FT

FT

f ) a > a
0

e) a
1

< a < a
0

b) a
3

< a < a
2

a) a < a
3

d) a = a
1

c) a = a
2

FT FT

FT FT

FIG. 5. Effects of the VA on the interface morphology �given here by surface contour plots� and interface diffraction data �SD and FT�,
across the transition from R2

�rec� to R1
�rec� state. a� The R2

�rec� state, with a checkerboard arrangement of rectangular elongated pyramids and pits
�inverted rooftops�. b� Altered form of R2

�rec� state �wormlike ripples�: the pit sizes are depressed and that arrays of small rounded mounds
form along rooftops of elongated pyramids. c� Interface morphology at the point where surface FT exhibits four peaks of equal magnitude
�four-lobe pattern� corresponds to rectangular mounds packed side-by-side. d� Interface morphology at the point where surface SD exhibits
four peaks of equal magnitude. e� Altered form of the R1

�rec� state �square pyramidlike state�: rooftoplike pyramids replaced by arrays of
nearly square shaped four-sided pyramids packed between longer in size pits �inverted rooftops�. f� The R1

�rec� state, with a checkerboard
arrangement of rectangular elongated pyramids and pits �inverted rooftops�.
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�ii� For a
aconcave��aconvex�, the concave downhill edges
�emerging from rooftops, see Fig. 3�b�� become nearly static
by the above analytic discussions. This feature hinders the
growth of rooftops in an a range above a1 and below of a0,
but �as a�aconvex�, the pits are still prone to grow in length.
This is exactly the situation we see from our simulations in
Fig. 5�e�, for a in the range a1�a�a0, evidencing the
growth of long pits and, also, the fact that long rectangular
rooftops cease to develop. Rather, they break into arrays of
small four sided pyramids seen in Fig. 5�e�. This altered form
of the R1

�rec� state seen in Fig. 5�e� for a in the range a1�a
�a0, is discussed in more details in Sec. III.

�iii� For a
aconvex��aconcave� the convex uphill edges
�emerging from pit bottoms, see Fig. 3�a�� become nearly
static by the above analytic discussions. This feature hinders
the growth of pits, but �as a�aconcave�, the rooftops are prone
to grow in length. This is exactly the situation we see from
our simulations in Fig. 5�b�, for a in the range a3�a�a2,
evidencing the growth of long rooftops and also, the fact that
pit bottoms are depressed in size and do not substantially
grow in time. This altered form of the R2

�rec� state in Fig. 5�b�,

for a in the range a3
aconvex�a�a2
aconcave, is discussed
in detail in Sec. III.

�iv� For a below aconvex��aconcave�, both the rooftops and
pit bottoms grow along the x1 direction �much as for zero VA
in Fig. 1�a��. Thus, the interface is in the R2

�rec� state, if a is
below aconvex, as seen in our simulations for a�a3
aconvex
in Fig. 5�a�.

Notably, beyond the above multitude of interfacial states
is the presence of ubiquitous vertical asymmetry. The VA
differently affects the concave uphill edges and concave
downhill edges. They become static at two distinct values of
the system control parameter aconvex and aconcave. This VA
effect gives rise to a complex kinetic phase diagram sug-
gested by our simulations in Fig. 5. In addition to the rect-
angular rippled states R1

�rec� �Fig. 5�f�� and R2
�rec� �Fig. 5�a��,

the phase diagram involves two VA induced interface states:
the altered R1

�rec� state �Fig. 5�e�� and the altered R2
�rec� state

�Fig. 5�b��. Note that the ripple rotation transition actually
proceeds as a transition between the two altered rectangular
states. The transition and the altered rippled rectangular
states are discussed in more detail in Sec. III.

III. RIPPLE ROTATION TRANSITION AND ALTERED
RECTANGULAR RIPPLED STATES

In this section, we continue discussions of our numerical
simulations of the model in Eqs. �2.1� through �2.6�. Com-
bining these equations yields interface height evolution equa-
tion

�h

�t
= −

�

�x1
� �h

�x1
�r1 − u11� �h

�x1
�2

− u12� �h

�x2
�2	�

−
�

�x2
� �h

�x2
�r2 − u22� �h

�x2
�2

− u21� �h

�x1
�2	�

− �11� �

�x1
�4

h − 2�12� �

�x1
�2� �

�x2
�2

h − �22� �

�x2
�4

h

−
�11

2
� �

�x1
�2� �h

�x1
�2

−
�12

2
� �

�x1
�2� �h

�x2
�2

−
�21

2
� �

�x2
�2� �h

�x1
�2

−
�22

2
� �

�x2
�2� �h

�x2
�2

−
�3

2

�

�x1

�

�x2
� �h

�x1

�h

�x2
	 . �3.1�

We solved the above interface evolution equation numeri-
cally by standard Euler algorithm, with finite differences ap-
proximating spatial derivatives as they stand in Eq. �3.1�, to
preserve the volume conservation law. We employed the
standard initial condition with h�x1 ,x2 , t=0�=0+small ran-
dom number �different at each grid site �x1 ,x2��. This corre-
sponds to nearly horizontal interface, close to the unstable
h=0 interface configuration. For other details of our simula-
tions, see the caption of Fig. 2. We stress that there are no
noise terms in Eq. �3.1�. Thus, the ultimate �long times� in-
terface morphologies depend only on the values of model
parameters. As noted in Sec. II, by a simple anisotropic res-

FIG. 6. �Color online� 3D views of the real-space interface mor-
phology and the corresponding FTs, i.e., near in-phase diffraction
patterns, for a nonzero VA, at several successive points along the
ripple rotation transition between the rectangular rippled states. In
a�, the altered form of the R2

�rec� state is shown. In it, pits sizes are
depressed whereas arrays of small mounds form along rooftops.
Note that this structure yields a FT which is essentially the same as
that of the R2

�rec� state, with just two peaks at �0, ±q2� �see, also,
Figs. 5�a� and 5�b��. In b�, the FT forms with two pairs of peaks, at
�±q1 ,0� and �0, ±q2�, having nearly equal magnitudes �four-lobe
pattern�. This corresponds to the transition at a=a2 discussed in our
text and seen on Ag�110� in Ref. �1�. At it, the interface structures
itself into rectangular pyramids sitting side-by-side �see also Fig.
5�c��. In c�, the altered form of the R1

�rec� state is shown, with roof-
top edges replaced by arrays of nearly square shaped four-sided
pyramids �see also Figs. 5�d� and 5�e��. Nonetheless, this complex
structure has qualitatively the same FT as R1

�rec�, with just two peaks
at �±q1 ,0� �see, also, Figs. 5�d�–5�f��.
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caling of the coordinates �x1 ,x2�, the continuum model Eq.
�3.1� can be made to depend on three dimensionless param-
eters �a ,b ,c�; see Ref. �4� and Eqs. �2.15� and �2.16� therein.
In the rescaled model, interface dynamics equation is as in
Eq. �3.1� above, with r1=1+a, r2=1−a, u11=u22=1, u12=b
+c, u21=b−c, as employed in Ref. �4� and throughout this
paper as well. As discussed in detail in Ref. �4�, the phenom-
enological parameter a is directly related to the experimental
control parameter �temperature, deposition, erosion flux,
etc.� the change of which produces the ripple rotation transi-
tion, from the ripples oriented along x1 direction to the
ripples oriented along the x2. This property of the parameter
a is a basic mathematical feature embedded in our continuum
model �4�. On the other hand, comparisons of the phenom-
enological theory in Ref. �4� with the experiments on various
�110� surfaces show that the parameters b and c do not sig-
nificantly depend on the experimental control parameter pro-
ducing the ripple rotation transition. Rather, b and c are more
materials dependent: Some materials �such as Ag; see Refs.
�1,2�� exhibit the ripple rotation transition involving our rect-
angular rippled states �this scenario is realized if b�
1+c2

in our model�, whereas other materials �such as Cu and Rh;
see the works under Ref. �3�� exhibit the ripple rotation tran-
sition involving our rhomboidal pyramid state �this scenario
is realized if b�
1+c2 in our model�. In this study, our
primary interest is in the VA effects on the interface mor-
phologies occurring for b�
1+c2, i.e., in the materials such
as Ag, in which the ripple rotation transition involves the
formation of rectangular rippled states.

The results of the simulations to be presented in this sec-
tion reveal that the VA is essential for elucidating the experi-
ments that have reported the ripple rotation transition on the
Ag�110� crystal surface �1,2�. Within our model, as in the
homoepitaxial growth experiments on the Ag�110� �1�, the
transition occurs within a multistable system parameter range
in which R1 and R2 facets are both stable. The slopes of these
facets, as obtained from our model, are depicted in Fig. 2�a�
versus the control parameter a. The facets slopes and facet
multistability behaviors seen in our Fig. 2�a� are in a remark-
able qualitative agreement with the facets multistability be-
haviors seen on Ag�110� with changing substrate temperature
�see Fig. 3�a� of Ref. �1��, provided our a is identified as a
temperaturelike control parameter. As discussed in Sec. II,
the VA current is a curvature current vanishing on flat facets.
Thus, the VA does not affect the magnitudes of the selected
slopes of the flat facets R1 and R2. They are determined
purely by the form of the nonequilibrium current yielding
Eqs. �2.6� and �2.7� depicted in Fig. 2�a�. Nonetheless, the
VA does qualitatively affect the long length scale interface
morphology in an ample range around the transition. Com-
pare our Fig. 5 obtained with a nonzero VA, with the Fig. 1
obtained with zero VA. As detailed hereafter, the experimen-
tal data of Refs. �1,2� are in accord with the predictions com-
ing from our theory provided the VA is incorporated into the
modeling. Practically significant among these data are the
experimentally obtained in Ref. �1� surface diffraction pat-
terns, i.e., the near in-phase and out-of-phase diffraction pat-
terns corresponding, respectively, to the surface Fourier
transform �FT� magnitude and slope distribution �SD� ob-
tained from our simulations. Here, we will show that various

experimental data on Ag�110� growth �1� and erosion �2� can
be physically elucidated only if nonzero VA is incorporated
into the theoretical picture.

We begin by discussing the a parameter range a2�a
�a1. Therein, in Fig. 2�b� we see a sharp increase of the
interface roughness. It is accompanied by nontrivial changes
of the surface data such as its FT, i.e., the near in-phase
diffraction pattern which exhibits four equally strong peaks
for a=a2 �see Fig. 5�c�� and, also, the changes of the surface
SD, i.e., out-of-phase diffraction pattern which exhibits four
equally peaks for a=a1 �see Fig. 5�d��, close to the rough-
ness maximum seen in Fig. 2�b�. As evidenced in Fig. 5, for
a�a1, the character of both types of diffraction data �SD and
FT� is closer to that of the R2

�rec� state, whereas, for a�a2, it
is closer to that of the R1

�rec� state. Thus, in terms of the
standard diffraction data, the ripple rotation transition actu-
ally occurs over an extended parameter range a2�a�a1,
which is narrow and characterized by a very steep rise of the
interface roughness that actually occurs between a2 and a1,
see Fig. 2�b�. From the comparisons presented in Fig. 2�b�,
we see that VA strongly enhances the interface roughness
yielding the prominent peak of the interface width seen
across the transition. Interestingly, for a=a1, close to the
point corresponding to the maximum roughness �growing
there as �h2�1/2� t0.5�, the interface structures itself into
nearly squarelike pyramids that are arranged side-by-side,
see Figs. 5�d� and 6�c�. We stress that such enhanced surface
roughening has been indeed seen in the ripple rotation tran-
sition on Ag�110�, in the epitaxial erosion experiments of
Ref. �2�. Moreover, in the STM images from these experi-
ments, one can see side-by-side arranged square pyramids as
in our Fig. 5�d� �see Fig. 4�c� of Ref. �2��. Strikingly, we find
that the ripple rotation proceeds as a sequence of two experi-
mentally significant �for the diffraction surface probes� tran-
sitions that we find in the proximity of the surface roughness
maximum. The first of them, at a=a1, occurs close to the
point of maximum roughness. This transition is experimen-
tally detectable by means of SD which for a=a1 exhibits two
equally strong pairs of peaks: the R1 peaks at the slopes
�±M1 ,0� and the R2 peaks at the slopes �0, ±M2�, as seen in
Fig. 5�d�. At this transition point, interface structures itself
into nearly square shaped pyramids sitting side-by-side, as
evidenced by Figs. 5�d� and 6�c�. Note that these squarelike
pyramids form arrays that are packed between long pits �in-
verted rooftops�. Interestingly, the presences of the long pits
conspires to produce the interface FT seen at a=a1 �Figs.
5�d� and 6�c�� which is qualitatively the same as that of
rippled rectangular state R1

�rec� �Figs. 5�f��. Thus, this first
transition point, at a=a1, can be seen only through SD data
exhibiting the four equally strong peaks seen in Fig. 5�d�. On
the other hand, the FT data undergo a qualitative change at
another phase transition point, at a=a2, off the point with
maximum roughness; see Figs. 2�b� and 5�c�. At this transi-
tion, the near in-phase diffraction pattern, i.e., interface FT
magnitude plot exhibits two equally strong pairs of peaks
seen in Figs. 5�c� and 6�b�: the R1-state-like peaks at �±q1 ,0�
and the R2-state-like peaks at �0, ±q2�. Such a four-lobe near
in-phase diffraction pattern has been indeed seen in the
ripple rotation transition on Ag�110� surface �1�. At this tran-
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sition point, we find that the surface structures itself into
rectangular pyramids sitting side by side; see Figs. 5�c� and
6�b�, both at a=a2. We stress that for zero VA, at the very
R1

�rec�-to-R2
�rec� transition the interface has the FT with four

peaks at the wave vectors �±q1 , ±q2�, see Fig. 1�b� here �4�.
This is in striking contrast to our theoretical results with
nonzero VA in Figs. 5�c� and 6�b� which are in full accord
with the experiments on the Ag�110� growth �1�, indicating a
FT pattern with two pairs of peaks �±q1 ,0� and �0, ±q2� that
are along the principal axes of the �110� surface. Thus, the
incorporation of VA is essential in order to reproduce the
four-lobe experimental diffraction pattern of Ref. �1�. This
fact provides rigorous evidence showing that VA plays a sig-
nificant role in epitaxial growth and erosion on crystal sur-
faces.

Our simulations in Fig. 5 reveal the existence of two VA
induced surface morphologies called in Sec. II “altered rect-
angular rippled” states, the AltR1

�rec� and AltR2
�rec� seen in

Figs. 5�e� and 5�b�, respectively. By Fig. 5, the ripple rota-
tion transition actually proceeds as a transition between the
two altered rectangular states. For the parameter a in the
range a3�a�a2 in Fig. 2, we find the AltR2

�rec� state �Figs.
5�b� and 6�a�� which is the altered form of the R2

�rec� rippled
state �Fig. 5�a��. Prominent difference between the R2

�rec� and
AltR2

�rec� states is in the behavior of their pits. In the R2
�rec�

state, the rectangular pyramids �roof tops� and the rectangu-
lar pits �inverted roof tops� grow with the same length �both
with and without VA; see Figs. 5�a� and 1�a��. In contrast to
this, in the AltR2

�rec� state, the rectangular pits remain small
while the elongated pyramids grow in time, as seen in Figs.
5�b� and 6�a�. In spite of this marked morphological feature,
the AltR2

�rec� state has both the near in-phase and out-of-phase
diffraction patterns practically indistinguishable from those
of the R2

�rec� state �compare Fig. 5�b� with Fig. 5�a��. A direct
�real space� probes of the interface, e.g., STM images, are
thus needed to experimentally distinguish between the R2

�rec�

and AltR2
�rec� states. Interestingly, VA induces an instability of

the rooftop edges on the elongated pyramids seen in Figs.
5�b� and 6�a� in the AltR2

�rec� state and, also, in a range of the
R2

�rec� state �see Fig. 5�a��. There, we see that the rooftop
edges are actually decorated by arrays of small rounded
mounds. These mounds are, however, small in size and thus
do not affect the interface diffraction data seen in Figs. 5�a�
and 5�b�, which are qualitatively the same as for zero VA
�see Fig. 1�a��. A direct look at the interface, by means of
STM images, is thus needed to see these arrays of small
mounds in the experiments. In Figs. 5�a� and 5�b�, these
arrays of small mounds are seen to develop only on the roof-
tops of the elongated pyramids whereas there are no such
arrays developing along the pits. Importantly, the AltR2

�rec�

state does not exhibit an enhanced roughening �see Fig.
2�b��. As in the R2

�rec� state �4�, the interface roughness in the
AltR2

�rec� state grows as �h2�1/2� t1/4.
On the other side of the ripple rotation transition, with the

a parameter in the range a1�a�a0 in Fig. 2, we have
AltR1

�rec� state seen in Fig. 5�e�. This is an intensely rough
state with its interface roughness growing as �h2�1/2� t0.4.
The AltR1

�rec� state near in-phase and out-of-phase diffraction

data in Fig. 5�e� are nearly the same as those of the R1
�rec�

state in Fig. 5�f�. Yet, in the real space STM images, this
intensely rough AltR1

�rec� state would resemble a square-
pyramid structured interface, with the pyramids sitting side-
by-side, as seen in Fig. 5�e�. Strikingly, however, a careful
look at the interface in Fig. 5�e� shows that the intensely
rough state has the long length-scale organization of the R1

�rec�

state �seen in Fig. 5�f��, however, with long rooflike rectan-
gular mounds replaced by arrays of small four-sided pyra-
mids packed between long rectangular pits. Due to this fea-
ture, the state in Fig. 5�e� exhibits diffraction patterns which
are nearly the same as those of the rectangular rippled state
R1

�rec� �Fig. 5�f��. Thus, the real space STM images are needed
to discriminate this intensely rough R1

�rec� state seen in Fig.
5�e�, from the R1

�rec� state seen in Fig. 5�f�.

IV. SUMMARY AND DISCUSSION OF EXPERIMENTS

Here we summarize our theoretical results and compare
them with the experimental STM data of Ref. �2� �ion beam
erosion of Ag�110�� and the diffraction data of Ref. �1� �ep-
itaxial growth on Ag�110��. In both experiments, the system
control parameter used was the substrate temperature. In the
following we relate the experimentally observed data to the
wealth of interfacial phenomena in our Figs. 5 and 6 that are
produced by VA on �110� crystal surfaces in the ripple rota-
tion transition involving the rectangular rippled states R1

�rec�

and R2
�rec�. Across this transition, with the change of the tem-

peraturelike parameter a, there is number of interesting tran-
sitions occurring at the six characteristic points a+�a3�a2
�a1�a0�a−, see Fig. 7�b�. �i� In the range a�a+, the
rippled state R2 occurs �not shown here, see Ref. �4��. �ii� In
the range a+�a�a3, the R2

�rec� state occurs �see Fig. 5�a��.
�iii� In the range a3�a�a2, our AltR2

�rec� occurs, with de-
pressed pit sizes and with rooftop edges decorated by arrays
of small rounded mounds. Still, all standard diffraction data
of this state are the same as those of the R2

�rec� state �Figs.
5�b� and 6�a��. The elongated pyramids of the AltR2

�rec� state
have wormlike shapes. Such a wormlike morphology of
ripples has been indeed seen in the STM image in Fig. 4�b�
of Ref. �2�, which nicely parallels our Fig. 5�b�. This state
morphology can be described as being obtained by cutting an
infinitely long worm into segments. The “cutting” is pro-
vided by the small pits placed between the long segments as
seen in our Fig. 5�b�, in accord with the STM image in Fig.
4�b� of Ref. �2�. In addition, in the same STM image one can
see also a modulation of the widths of wormlike pyramids
�pearl-like substructure�, corresponding to the presence of
the arrays of small rounded mounds in Fig. 5�b�. �iv� At a

a2, the interface structures itself as rectangular mounds
sitting side-by-side, and the in-phase diffraction pattern ex-
hibits two equally strong pairs of peaks, at �±q1 ,0� and
�0, ±q2� as seen in Figs. 5�c� and 6�b�. This corresponds to
the four-lobe near in-phase diffraction pattern observed in
Ref. �1� at the ripple rotation transition on Ag�110�. We recall
that there is no such FT interface pattern present with zero
VA; see Fig. 1�b� in which the four-lobe FT pattern has peak
positions different from those seen both in the experiments
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�1� and in our simulations in Figs. 5�c� and 6�b� with nonzero
VA. Thus, our theoretical findings with nonzero VA, in com-
bination with the experiments �1�, provide rigorous evidence
that VA plays a significant qualitative role in epitaxial growth
and erosion on crystal surfaces. Our results demonstrate the
VA’s ability to induce formation of unique interface mor-
phologies different from those that would occur with zero
VA; compare Figs. 5�c� and 1�b�. �v� The range a2�a�a1,
characterized by a steep increase of the interface roughness
in Fig. 2�b�, is an extended ripple rotation transition region
inside of which the interface SD �out-of-phase diffraction
pattern� is more like to that of R2

�rec� state, whereas the inter-
face FT �the in-phase diffraction pattern� is more similar to
that of the R1

�rec� state. �vi� At a
a1, the interface SD, i.e.,
out-of-phase diffraction pattern has two equally strong peaks,
at �±M1 ,0� and �0, ±M2� seen in Fig. 5�d�. �vii� For a in the
range a1�a�a0, the AltR1

�rec� state occurs. It exhibits en-
hanced roughening seen in Fig. 2�b�, and it is characterized
by rooftop edges replaced by arrays of small nearly square
shaped pyramids packed between long pits seen in Fig. 5�e�.
Due to this, all diffraction data of the intensely rough
AltR1

�rec� state are nearly the same as those of the R1
�rec� state

that occurs for a�a0 in Fig. 5�f�. Such an intensely rough
state has been indeed seen in the ripple rotation transition of
Ag�110� in the epitaxial erosion experiments �2�. In fact, in

the STM image in Fig. 4�c� of Ref. �2�, one can indeed see
side-by-side arranged nearly square shaped pyramids of our
AltR1

�rec� state in Fig. 5�e�. �viii� Just next to this STM image
of Ref. �2� one can furthermore see rectangular pyramids of
our R1

�rec� state �a0�a�a�, with our Fig. 5�f� corresponding
to the STM image in Fig. 4�d� of Ref. �2�. This state is
checkerboard arrangement of rectangular elongated pyramids
and pits �inverted rooftops�. �ix� Finally, in the range a�a−,
the rippled state R1 occurs �not shown here, see Ref. �4��. It
corresponds to the STM image in Fig. 4�e� of Ref. �2�, which
nicely illustrates the presence of rippled state dislocations
theoretically discussed in Ref. �4�.

In addition to the above agreements between our theory
and the experimental surface morphology data on Ag�110�
�1,2�, there is also a remarkable agreement with the surface
roughness and feature size data measured across the ripple
rotation transition �2�. Experimentally, these data are highly
asymmetric across the transition �2�, in accord with our
simulations results in Fig. 2�b�. Our study has elucidated this
asymmetry in terms of the difference between the roughen-
ing characters of the wormlike altered R2

�rec� state in Fig. 5�b�,
with the surface roughness �t0.25, and significantly rougher
square pyramidlike altered R1

�rec� state in Fig. 5�e�, with the
roughness �t0.4. Multitude of interfacial phenomena re-
vealed in this study is summarized in Fig. 7 in which, for
comparison, we depict kinetic phase diagram forms both
without �Fig. 7�a�� and with VA �Fig. 7�b��. The comparison
well illustrates qualitatively significant effects induced by the
VA. Vertical asymmetry changes qualitatively the morphol-
ogy of the standard rectangular rippled states in the proxim-
ity of the ripple rotation transition. Two new types of inter-
facial states, the altered R1

�rec� state and the altered R2
�rec� state,

emerge in Fig. 7�b�, purely due to the VA. Importantly, the
very ripple rotation itself goes on as a transition between the
two altered rectangular rippled states. Due to VA, the transi-
tion occurs over an extended parameter range interposed be-
tween the altered states ranges. For VA→0, the ranges of the
altered R1

�rec� and altered R2
�rec� states, and ripple rotation tran-

sition range, all shrink to a single critical point, the acr in Fig.
7�a�. For zero VA, acr was identified as the single critical
point at which the R1 and R2 facets coexist across static
edges; see Eq. �2.10�. However, as revealed in Sec. II, VA
affects differently the concave uphill edges and concave
downhill edges, so they become static at two distinct values
of the system control parameter aconvex and aconcave which
merge into acr in the zero VA limit; see our Eq. �2.37� and the
discussion. For a nonzero VA, however, aconvex�aconcave.
This seminal VA effect gives rise to the complex kinetic
phase diagram in Fig. 7�b� involving the altered R1

�rec� state,
the altered R2

�rec� state, and the extended ripple rotation tran-
sition range.

Focus of this study was on the ripple rotation transition
involving the multistable region, seen in the epitaxial growth
and erosion experiments on Ag�110� �1,2�, in which R1 facets
�±M1 ,0� and R2 facets �0, ±M2� are both stable. An alterna-
tive scenario for this transition, anticipated in Ref. �4�, and
then observed on Rh�110� and Cu�110� surfaces �3�, involves
the intermediary rhomboidal pyramid �RhP� state. The RhP
structures are 2D arrays of four sided pyramids and pyrami-

FIG. 7. Kinetic phase diagram of the growing �110� interface for
zero VA a�, and for nonzero VA b�. Note that VA introduces two
new interfacial states, the altered R1

�rec� state and the altered R2
�rec�

state. Also, VA causes a smearing of the ripple rotation transition
over extended parameter range �a2 ,a1�. For VA→0, the range of
the altered states �a3 ,a0� in b�, shrinks to a single critical point, acr

in a�. In b�, aconvex
a3 and aconcave
a2 label the values of the
control parameter a for which, respectively, static convex uphill
edges �Fig. 3�a�� and static concave downhill edges �Fig. 3�b�� ex-
ist. As VA→0, aconvex and aconcave in b� merge into a single critical
point acr in a�.
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dal pits that have rhomboidal contour lines. The RhP state
pyramids are comprised of facets which slope vectors form a
quartet of four equivalent �symmetry related� slope vectors
�±M1 , ±M2� �4�. In accord with the experiments �3�, the RhP
state exhibits an enhanced roughening, with �h2�1/2� t0.4, al-
ready with zero VA �4�. In addition, the SD and FT data for
the RhP state obtained for zero VA �4�, are qualitatively the
same as the data obtained in the experiments on Rh�110� and
Cu�110�, �3�. Thus, the VA does not substantially alter the
RhP state. Beyond this is the fact that the RhP four sided
pyramids are made out of the quartet of four equivalent fac-
ets. By symmetry, such facets can coexist across static edges
for whatever values of the system control parameter or of the
VA. The VA produces only �purely quantitative� difference
between the widths of the uphill and downhill edges on the
four-sided pyramids and pits �see Ref. �6�, for a similar VA
effect on the �100� surfaces�. In contrast to the RhP pyra-
mids, the rectangular rippled states have pyramids comprised
of two types of facets R1 at �±M1 ,0� and R2 at �0, ±M2�,
which are oriented along the two nonequivalent principal
axis of �110� �see SDs in our figures here�. Such nonequiva-
lent facets can coexist across static edges only at special
values of the system control parameter which are affected by
the VA. As discussed in this study, this fact prominently af-
fects the structure, dynamics, and kinetic phase transitions of
the interface for the systems in which the ripple rotation
transition goes through the multistable system parameter re-
gion in which R1 and R2 facets are both stable.

One of our major points is that in the symmetry class of
�110� surfaces, the VA can produce interface morphologies
which are not present with zero VA. In this paper, we have
supported this finding both by analytic arguments and by
numerical simulations. On the other hand, VA effects on the
symmetry class of �100� surfaces have not been explored
with such a level rigor notwithstanding our brief discussions
of VA effects on �100� surfaces in Ref. �6�. In that work,
some striking VA morphological effects were observed in the
numerical simulations within the so-called multi-P domain
of the kinetic phase diagram of �100� surfaces. In those simu-
lations, VA was seen to produce long lived yet only transient
interfacial morphologies �with ultimate morphologies still
being the same as for zero VA�. Under some circumstances,
however, these VA dominated morphologies persisted over
time scales longer than simulation times of Ref. �6�. This
suggests that VA on �100� surfaces also may produce ulti-
mate �long times� interface morphologies which are not
present for zero VA. However, no such a claim on �100�
surfaces could had been made with full rigor in Ref. �6�, due
to lack of analytic arguments additionally supporting this
suggestion from the simulations. Our present theoretical
study on �110� surfaces, for which we could address VA
more deeply, not only by simulations but also analytically,
will certainly motivate a reconsideration of the VA role on
�100� and �111� surfaces as well. They have higher symme-
tries than �110� and may be thus more susceptible to VA
effects, possibly even more complex than those described in
the present paper on �110� surfaces.
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